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Abstract. The solutions of the site percolation problem for some Bethe lattices of interacting 
spins are shown. For zero external field some arguments are given which predict for three- 
dimensional models p c  < + and for planar models pc  = f where p c  is the critical density of 
overturned spins for the percolation problem. 

1. Introduction 

The percolation problem has been studied for non-interacting systems mostly (for general 
reviews see Frisch and Hammersley 1963, Shante and Kirkpatrick 1971, Essam 1973). 
Kikuchi (1970) developed a method for finding approximate solutions, which applies 
also to interacting systems. The interest in studying the problem with interaction lies 
not only in generalizing the percolation problem to those systems for which the inter- 
action cannot be neglected, but also because interacting systems may exhibit a phase 
transition. One can then ask if there is any connection between phase transition and 
percolation. 

In 5 2 of this paper we give the solution of the percolation problem for a particular 
class of models such as Bethe lattices with a ferromagnetic interaction. It is shown that 
spontaneous magnetization is always associated with an infinite cluster of ‘up’ and ‘down’ 
spins. On this basis, we give in 5 3 some arguments which generalize this result to any 
other ferromagnetic system. It is shown that this implies, for such a system with zero 
external field, the relation p ,  < f for the critical probability, the equality referring to 
planar lattices. 

2. Percolation problem for ferromagnetic systems: Bethe lattices 

Let us begin by considering an Ising model. We introduce the usual variables 
= , -2J/kT (see Domb 1960), J is the interaction between nearest- 

neighbour spins, T is  the temperature, m is the magnetic moment of a single spin, H is 
the external magnetic field and k is the Boltzmann constant. The reduced magnetization 
is defined as M = 1 - 2 p ( p ,  z )  where p ( p ,  z )  is the density of overturned spins, and also 
the probability that a given spin is ‘down’. 

Let P L ( p ,  z )  be the percolation probability, ie the probability that a given spin ‘down’ 
belongs to an infinite cluster of overturned spins and Si(p, z )  be the mean cluster size 

= , -2mH/kT , 
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of finite clusters of overturned spins. For J = 0 these quantities coincide with the usual 
percolation probability and mean cluster size in the site problem without interaction. 

A closed-form solution of the percolation problem has not yet been found for the 
two-dimensional and three-dimensional lattices of principal interest. One can obtain 
appreciable insight by studying this problem for a class of models such as Bethe lattices. 
Examples of such lattices are given in figure 1. 

Figure 1. Examples of Bethe lattices: (a) simple Bethe lattice of coordination number 
a+ 1 = 4 ;  ( b )  decorated Bethe lattice derived from a simple Bethe lattice of coordination 
number a+  1 = 3 with the addition of an extra site on each bond. 

The percolation problem for this class of model has already been solved by Fisher 
and Essam (1961) and Essam (1973) for a random distribution of overturned spins, ie 
J = 0. 

Here we consider the same problem when the interaction among the spins is different 
from zero. In solving these models we make the usual assumption that edge effects are 
to be neglected as this leads to a physically realistic approximation, which is thermo- 
dynamically sound (see Domb 1960, Fisher and Essam 1961). Otherwise the models 
yield singularities of a quite different type (Eggarter 1974). 

In a second paper we shall derive the general solutions for such models ; here we shall 
give only the results for the simple Bethe lattices of coordination number 0 + 1. We find 
that 

PL(P> 4 = q(a(P9 4) 
SI@, z )  = s:(a@,Z)) ( 2 )  

(1) 

where P:@) and Sib) are respectively the percolation probability and the mean cluster 
size for the non-interacting Bethe lattices, which have already been calculated by Fisher 
and Essam (1961) and Essam (1973) and 

where 

The density of overturned spins is given by 

PI011 + Z )  

p:+2p,z+ 1 P =  
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which is related to the reduced magnetization by 

W p ,  z) = 1 - 2 P ( P ,  4. 
The critical behaviour of Py@) and Sy(p) is 
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(6) 

where p," is the critical probability of the Bethe lattices without interaction, and is given 
by 

1 
p," = -. 

a 

Equations (4H6) (Domb 1960) give the equation of state of the simple Bethe lattices. 
In the zero external magnetic field (p = 1) the system exhibits a spontaneous magnetiza- 
tion for z < z, = (a- l)/(o+ 1) which corresponds to the critical temperature. The 
equation S ; ' ( p ,  z) = 0 defines in the p-z plane, a critical line of percolation points, 
pc = p,(z). In the p-z plane the critical line is given by pc  = p(p,(z), z). For the Bethe 
lattices, from (2) and (8) the critical line of percolation points is given by 

which together with equations (3) and (5) gives 

1 0 2 Z 2  

0 (a - 1)2 + (2a - 1)z2 
p = -  (9) 

which coincides with the result found in a different way by Kikuchi (1970). We note that 
for all z, pc(z) < p:  as the attractive interaction facilitates the possibility of having an 
infinite cluster. 

In figure 2 we have plotted pc  against z for a = 3 The broken curve is 

p(l- ,z)  = lim p(p,z); 
p + 1 -  

z, corresponds to the critical temperature in the order-disorder transition. The upper 
curve is pc(z), zp corresponds to p,(zp) = 1 ; for z c zp,  p, > 1 while pc  c 3, which cor- 
responds to instability. This means that for z < zp one can never reach the critical pro- 
bability as this is larger than the density of overturned spins due to the spontaneous 
magnetization. At zero external field and z < z ,  the system of spins exhibits a degenera- 
tion in two states. Each state is characterized by a different value of the density of 
overturned spins p(1-, z) and p(1+, z) where 1 - and 1 + mean that we have taken the 
limit H + 0' respectively from positive and negative values. They satisfy the relation 
p(1-, z)+p(l+,  z) = 1 and 0 < p(1-, z )  < i. Also the percolation probability, for z < z, 
exhibits two values Pl(l -, z) and Pl(l +, z )  corresponding to p(1-, z )  and p(l+, z). Note 
that because of symmetry PI@- ', z )  = P,(,u, z)  where P,(,u, z )  is the probability that a 
given 'up' spin belongs to an infinite cluster of 'up' spins. In particular 

P1(l+,Z) = Pt(l- ,z) .  (10) 
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Figure 2. The upper full curve is p,(z),  the critical value of p characterizing the percolation 
points, against z ;  the broken curve is p(-,z) ,  the density of overturned spins for fi  = 1-. 
The lower full curve is p,(z), the critical density of overturned spins. The percolation point 
zp corresponding to p c  = 1 is coincident with the value of z for which p(l- ,  z) and p,(z) inter- 
sect. All the curves refer to the simple Bethe lattice of coordination number U +  1 = 4. 

Analogously we define S l ( l - ,  z), S,(1+, z) and ST(l-, z) where 

S I ( l + , Z )  = s 7 ( l - , z ) .  

In order to understand the connection between the critical point in the order-disorder 
transition and the percolation point, we have analysed two models at zero magnetic 
field, the simple Bethe lattice of coordination number 4 (figure l(a)) for which the critical 
probability with zero interaction is p:  = 3 < r and  the decorated lattice of coordination 
number 3 (figure l(b)) for which p," = 44 > i. In figures 3(a) and (b)  we have plotted 
Pl(l-, z) and PT(l-, z) = P l ( l + ,  z) against z. In the same figures we have also plotted 
Sl( l - ,  z) and S T ( l - ,  z) = S l ( l + ,  z) against z. 

For small values of z we only have infinite clusters of 'up' spins. PT(l -, z) starts with 
its maximum value at z = 0 and then decreases as p(l- ,  z) is an increasing function of z ;  
at z = zp corresponding to p ,  = p( l - ,  zp) < 3 the mean cluster size of finite clusters of 
overturned spins diverges. The behaviour of P l ( l - , z )  is quite clear. It is zero for 
z < zp. For zp < z < z, it is an increasing function of z, since z is a rapidly increasing 
function of p(1-, z). For z > z, PI (1-, z) becomes equal to Pt(l-, z), and decreases, 
since as z increases, p( l - ,  z) remains always equal to 3, while the distribution of 'up' and 
'down' spins becomes always more random. P l ( l - , z )  will go to zero depending on 
whether or not p:  2 3. This is easily explained if one considers that 

P l ( l - ,  1) = P?(p  = 3). 
Note that as a consequence of this fact, the model of figure 3(b) for which p," > 4 exhibits 
a second percolation point at z = zpr  > z,. 
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Figure 3. The broken curves are P,( l - ,  z )  and S, ( l - ,  z), respectively, the probability that a 
given ‘up’ spin belongs to an infinite cluster of ‘up’ spins and the mean cluster size of finite 
clusters of ‘up’ spins for p = I - .  P , ( l - ,  z )  and Sl(l-, z )  are the same quantities for ‘down’ 
spins. For z > z,, P , ( l - , z )  = Pl(l - ,z)  and S T ( l - , z )  = Sl( l - ,z ) .  The percolation point is 
the value of z where Pl(l-, z )  goes to zero and Sl(l- ,  2) diverges. On the left is the scale of 
P,(l- ,  z )  and Pl( l - ,z ) ,  on the right the scale of S,(l-, z )  and Sl( l - ,  z). (a) refers to the 
simple Bethe lattice of coordination number a + l  = 4; (b) refers to the decorated Bethe 
lattice of figure l(b). Note that this model exhibits two percolation points. 

3. Considerations for two- and three-dimensional systems 

We have found that for zero external magnetic field, the critical probability p c  is always 
less than 3 not only for those models for which p,” < 3 but also for the G = 2 decorated 
lattice for which p,“ > 3. 

We want to give a plausibility argument which shows for a general ferromagnetic 
lattice in zero external magnetic field that pc  < 4. Let us first show that a lattice system 
with spontaneous magnetization must exhibit an infinite cluster. In fact suppose that 
there are no infinite clusters. Divide the system in regions much larger than the mean 
cluster size, so that every region can be a good sample of the whole system, and much 
larger than the coherence length, so that correlations among regions can be neglected. 
If we have a distribution of clusters of ‘up’ spins and ‘down’ spins in one region with a 
given probability, the same distribution with reversed spins must occur in another region 
with the same probability. As a consequence the net magnetization will be zero. 

If we now assume p c  > f we get 

P L ( l - ,  2 )  = 0 for any z 

and (11) 

P T ( 1 + , Z )  = 0 for z > zpl 
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where zp, < z, and is such that p(  1 +, zp.) = p c  > ). As a consequence, for all z E [zp,, z,] 
where the spontaneous magnetization is different from zero, we get PL( l - ,  z )  = 0 and 
from (lo), PT( l - ,  z )  = 0, which, together with equation (1 1) implies the absence of an 
infinite cluster of either ‘up’ or ‘down’ spins. But this contradicts the argument given 
before that spontaneous magnetization can only exist if an infinite cluster is present. 
Therefore, in conclusion, for a ferromagnetic lattice with zero external magnetic field, 
Pc  G 7. 

An interesting application of this result could be made to planar lattices. Harris 
(1960) and Fisher (1961) proved that for any two-dimensional site percolation problem 
p ,  3 3 when the distribution of particles or overturned spins is random. If one can 
extend the validity of this theorem to interacting spins, then the relation p c  3 3 combined 
with the previous one p c  < ) leads to the conclusion that for any planar lattice with 
ferromagnetic interaction and zero external magnetic field, p c  = 3, ie at zero external 
magnetic field the critical point in the order-disorder transition and the percolation 
point coincide. This result is verified rigorously for the triangular lattice, not only in the 
random distribution (Sykes and Essam 1964a) but also in the interacting case (Essam 
1973). 

Series expansions on the square lattice with H = 0 also seem to exhibit p ,  = 4 
(M F Sykes and D S Gaunt, private communication). 

What can be said for the three-dimensional lattices? Series expansions (Essam 1973) 
give strong evidence (Sykes and Essam 1964b) that in the random distribution for all 
the three-dimensional lattices studied p:  < 3. 

The presence of a ferromagnetic interaction, as shown on the Bethe models, tends 
to reduce the value of the critical probability. We should expect that for a three- 
dimensional lattice p ,  c $ and a behaviour for the percolation probability and mean 
cluster size of the type shown in figure 3(a). Series expansions for some three-dimensional 
lattices, with a ferromagnetic interaction (M F Sykes and D S Gaunt, private communi- 
cation) and a Monte Carlo method calculation on the simple cubic lattice (Muller- 
Krumbhaar 1974) show that p ,  < $ for zero external magnetic field. 

In conclusion we have given some results for the percolation problem on Bethe 
lattices with ferromagnetic interactions. These results suggest some conjectures for 
two- and three-dimensional lattices, whose rigorous validity would be worthy of further 
investigation. 
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